Weighted Parameters in (P5, P5)-free Graphs

نویسندگان

  • Vassilis Giakoumakis
  • Irena Rusu
چکیده

We use the modular decomposition to give O(n(m + n)) algorithms for finding a maximum weighted clique (respectively stable set) and an approximate weighted colouring (respectively partition into cliques) in a (P5, P5)-free graph. As a by-product, we obtain an O(m+n) algorithm for finding a minimum weighted transversal of the C5 in a (P5, P5)free graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independent Set in P5-Free Graphs in Polynomial Time

The Independent Set problem is NP-hard in general, however polynomial time algorithms exist for the problem on various specific graph classes. Over the last couple of decades there has been a long sequence of papers exploring the boundary between the NPhard and polynomial time solvable cases. In particular the complexity of Independent Set on P5-free graphs has received significant attention, a...

متن کامل

Weighted Efficient Domination for P5-Free Graphs in Linear Time

In a finite undirected graph G = (V,E), a vertex v ∈ V dominates itself and its neighbors. A vertex set D ⊆ V in G is an efficient dominating set (e.d. for short) of G if every vertex of G is dominated by exactly one vertex of D. The Efficient Domination (ED) problem, which asks for the existence of an e.d. in G, is known to be NP-complete for P7-free graphs but solvable in polynomial time for ...

متن کامل

On (P5, diamond)-free graphs

We study the stability number, chromatic number and clique cover of graphs with no induced P5 and diamonds. In particular, we provide a way to obtain all imperfect (P5, diamond)-free graphs by iterated point multiplication or substitution from a /nite collection of small basic graphs. Corollaries of this and other structural properties, among which a result of Bacs1 o and Tuza, are (i) combinat...

متن کامل

Polynomial Cases for the Vertex Coloring Problem

The computational complexity of the Vertex Coloring problem is known for all hereditary classes of graphs defined by forbidding two connected five-vertex induced subgraphs, except for seven cases. We prove the polynomial-time solvability of four of these problems: for (P5, dart)-free graphs, (P5, banner)-free graphs, (P5, bull)-free graphs, and (fork, bull)-free graphs.

متن کامل

Weighted independent sets in a subclass of P6-free graphs

TheMaximum Weight Independent Set (MWIS) problem on graphs with vertex weights asks for a set of pairwise nonadjacent vertices of maximum total weight. The complexity of the MWIS problem for P6-free graphs is unknown. In this note, we show that the MWIS problem can be solved in time O(nm) for (P6, banner)-free graphs by analyzing the structure of subclasses of these class of graphs. This extend...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 80  شماره 

صفحات  -

تاریخ انتشار 1997